Circuito Eléctrico
Un circuito eléctrico es un grupo de componentes interconectados. El análisis de circuitos es el proceso de calcular intensidades, tensiones o potencias. Existen muchas técnicas para lograrlo, Sin embargo, se asume que los componentes de los circuitos son lineales. Los métodos descritos en este artículo solo se aplican al análisis de circuitos lineales salvo en los casos expresamente establecidos. Para entender este artículo se necesitan saber las partes básicas de un circuito así como sus leyes fundamentales.
Componente | Un dispositivo con dos o más terminales capaz de hacer fluir carga. |
Nodo | Punto donde dos o más elementos tienen una conexión común. Se considera un nodo a un conductor con una resistencia igual a cero. |
Rama | Una rama es un conjunto de elementos que se pueden simplificar formando un dispositivo que represente el comportamiento de ellos. |
Malla | Cualquier circuito cerrado de ramas es una malla, con la condición que no pase dos veces por el mismo nodo. |
Circuito | Red donde circula una corriente proveniente de una fuente, a través de componentes pasivos. Un circuito es, en este sentido, una red de dos terminales que sea trivial analizarse. Frecuentemente, "circuito" y "red" se usan indistintamente, pero muchos analistas reservan "red" para referirse a un modelo idealizado consistente de componentes ideales. |
Función de transferencia | La relación de las corrientes y tensiones de dos puertos. Se define frecuentemente como una comparación entre un puerto de entrada y un puerto de salida para determinar ganancia o atenuación. |
Diseño de Transformaciones
se entiende por diseño de transformadores al cálculo, proyección y confección de los transformadores, estás máquinas eléctricas, indispensables para el uso de la electricidad residencial como también para las subestaciones, son capaces de elevar o disminuir los niveles de tensión e intensidad de la corriente eléctrica, para que haga funcionar un determinado elemento o factor.
Teorema de Norton
para circuitos eléctricos es dual del teorema de Thévenin. Se conoce así en honor al ingeniero Edward Lawry Norton, de los Laboratorios Bell, que lo publicó en un informe interno en el año 1926. El alemán Hans Ferdinand Mayer llegó a la misma conclusión de forma simultánea e independiente.
Establece que cualquier circuito lineal se puede sustituir por una fuente equivalente de intensidad en paralelo con una impedancia equivalente.
Al sustituir un generador de corriente por uno de tensión, el borne positivo del generador de tensión deberá coincidir con el borne positivo del generador de corriente y viceversa.
Calculo del Teorema de Norton Equivalente
El circuito Norton equivalente consiste en una fuente de corriente INo en paralelo con una resistencia RNo. Para calcularlo:
- Se calcula la corriente de salida, IAB, cuando se cortocircuita la salida, es decir, cuando se pone una carga (tensión) nula entre A y B. Al colocar un cortocircuito entre A y B toda la intensidad INo circula por la rama AB, por lo que ahora IAB es igual a INo.
- Se calcula la tensión de salida, VAB, cuando no se conecta ninguna carga externa, es decir, cuando se pone una resistencia infinita entre A y B. RNo es ahora igual a VAB dividido entre INo porque toda la intensidad INo ahora circula a través de RNo y las tensiones de ambas ramas tienen que coincidir ( VAB = INoRNo ).
Ley de Ohm,
postulada por el físico y matemático alemán Georg Simon Ohm, es una ley de la electricidad. Establece que la diferencia de potencial
que aparece entre los extremos de un conductor determinado es proporcional a la intensidad de la corriente
que circula por el citado conductor. Ohm completó la ley introduciendo la noción de resistencia eléctrica
; que es el factor de proporcionalidad que aparece en la relación entre
e
:
La fórmula anterior se conoce como ley de Ohm incluso cuando la resistencia varía con la corriente,1 2 y en la misma
corresponde a la diferencia de potencial,
a la resistencia e
a la intensidad de la corriente. Las unidades de esas tres magnitudes en el sistema internacional de unidades son, respectivamente, voltios (V), ohmios (Ω) y amperios (A).
Otras expresiones alternativas, que se obtienen a partir de la ecuación anterior, son:
válida si 'R' no es nulo
válida si 'I' no es nula
En los circuitos de alterna senoidal, a partir del concepto de impedancia, se ha generalizado esta ley, dando lugar a la llamada ley de Ohm para circuitos recorridos por corriente alterna, que indica:3
Donde
corresponde al fasor corriente,
al fasor tensión y
a la impedancia.
Leyes de Kirchhoff
Las leyes de Kirchhoff son dos igualdades que se basan en la conservación de la energía y la carga en los circuitos eléctricos. Fueron descritas por primera vez en 1845 por Gustav Kirchhoff. Son ampliamente usadas en ingeniería eléctrica.
Ambas leyes de circuitos pueden derivarse directamente de las ecuaciones de Maxwell, pero Kirchhoff precedió a Maxwell y gracias a Georg Ohm su trabajo fue generalizado. Estas leyes son muy utilizadas en ingeniería eléctrica e ingeniería electrónica para hallar corrientes y tensiones en cualquier punto de un circuito eléctrico.
Teorema de Thévenin
En la teoría de circuitos eléctricos, el teorema de Thévenin establece que si una parte de un circuito eléctrico lineal está comprendida entre dos terminales A y B, esta parte en cuestión puede sustituirse por un circuito equivalente que esté constituido únicamente por un generador de tensión en serie con una impedancia, de forma que al conectar un elemento entre los dos terminales A y B, la tensión que cae en él y la intensidad que lo atraviesa son las mismas tanto en el circuito real como en el equivalente.
El teorema de Thévenin fue enunciado por primera vez por el científico alemán Hermann von Helmholtz en el año 1853,1 pero fue redescubierto en 1883 por el ingeniero de telégrafos francés Léon Charles Thévenin (1857–1926), de quien toma su nombre.2 3 El teorema de Thévenin es el dual del teorema de Norton.
Teorema de superposición
El teorema de superposición sólo se puede utilizar en el caso de circuitos eléctricos lineales, es decir circuitos formados únicamente por componentes lineales (en los cuales la amplitud de la corriente que los atraviesa es proporcional a la amplitud de voltaje a sus extremidades).
El teorema de superposición ayuda a encontrar:
- Valores de voltaje, en una posición de un circuito, que tiene más de una fuente de voltaje.
- Valores de corriente, en un circuito con más de una fuente de voltaje.
Este teorema establece que el efecto que dos o más fuentes tienen sobre una impedancia es igual, a la suma de cada uno de los efectos de cada fuente tomados por separado, sustituyendo todas las fuentes de voltaje restantes por un corto circuito, y todas las fuentes de corriente restantes por un circuito abierto.
Por ejemplo, si el voltaje total de un circuito dependiese de dos fuentes de tensión:
Lucky Club Casino Site - Get Lucky Club Casino No Deposit Bonus
ResponderEliminarLucky Club Casino Site. Lucky Club is a brand new casino luckyclub.live site that has received many positive reviews and offers since launching in 2018.
Play Slots - DrMCD
ResponderEliminarDiscover the best online slots games at Dr.MCD. Play slots 경산 출장샵 for real money 시흥 출장마사지 at 영천 출장샵 Dr.MCD! 광주 출장샵 of classic and new slots with fast 도레미시디 출장샵 payouts and a lot more.